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Abstract: 

This study aims to explore the impact of light-duty 

passenger (LP) electric vehicle (EV) charging on the 

Portuguese national load diagram (LD) in 2030. The goal is 

to identify EV charging strategies that enable a sustainable 

configuration of the Portuguese LD under different potential 

levels of LP EV penetration in 2030. The research offers 

information for Portuguese utilities and policy makers 

regarding potential threats and solutions of distinct EV 

charging strategies on the national power system in 2030. 

Furthermore, it proposes a methodology which can also be 

adopted by other countries to analyse similar problems. The 

three predicted scenarios of EV penetration were designated 

as: pessimistic (85,925 EVs), base (442,445) and optimistic 

(2,008,717). Within the pessimistic and base scenarios, 

results indicate that an intelligent grid is not necessary to 

perform charging activities. However, coordinating EV 

charging in the evening, via a smart gird (SG), is imperative 

in the optimistic scenario, as unsustainable levels of 

demanded power will be reached otherwise. Moreover, 

morning charging sessions must also be addressed, as they 

may induce new peaks of daily consumption given the 

significant amount of charging activity taking place within 

that period. 
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1.Introduction 

Several predictions foresee electric vehicles (EVs) 

making up a considerable portion of national vehicle fleets. 

If charging activities are performed in an uncontrolled (UC) 

manner, EVs capable of connecting to the grid, i.e. plug-in 

EVs and plug-in hybrid EVs [1], which from this moment 

forth will be designated collectively as EVs, will pose as a 

threat to future power systems, due to the significant loads 

induced on national grids [2]. 

One of the main research fields that addresses the 

aforementioned problem is based on analysing the impacts 

of EV charging on national LDs, with the purpose of 

identifying and quantifying the peak loads associated with 

UC charging. Additionally, authors propose numerous EV 

controlled charging strategies  

that attempt to promote LDs with sustainable configurations. 

Within this field, research is typically divided into three 

categories: i.) UC Charging and Non-Optimised Controlled 

Charging Solutions; ii.) Optimised Controlled Charging 

Solutions; and iii.) Vehicle-to-Grid (V2G) and Additional 

UC Charging Operations.  

In i.), studies identify the most common patterns of UC 

EV charging and subsequently portray those findings on 

LDs to locate the most prominent threats. Additionally, 

authors propose non-optimised controlled charging 

solutions.  

 

Within the scope of i.), studies indicate that UC charging 

will mostly affect peaking units in the evening, due to the  

considerable number of users charging their vehicles 

simultaneously upon arriving home from work [3, 4, 5]. This 

conclusion was drawn under the assumption that the most 

significant EV loads will be registered when the highest 

number of vehicle arrivals is observed, which according to 

travel surveys, such as the National Household Travel 

Survey, will take place within the aforementioned evening 

period [6, 7]. Furthermore, authors have identified that the 

distribution which most resembles the pattern associated 

with the arrival of a fleet of vehicles in the evening is the 

Gaussian distribution. As such, the same studies have used 

this function to mathematically model the distribution of UC 

EV charging within the respective period [8, 9]. Research 

has also analysed the outcomes of using distinct levels of 

power in EV charging activities.  

The results obtained from these studies suggest that 

charging with lower levels of power induces less threatening 

LD configurations than charging with higher levels of 

power, as the latter provoke sudden peaks of considerable 

load and the former merely extend the period in which 

secure levels of EV demand is registered [6, 7, 9]. Lastly, 

studies have typically identified that shifting charging events 

to the valley period, via time-of-use (TOU) tariffs or utility-

based scheduling, for example, can reduce the impact of EV 

charging on the LD [6, 9]. 

Within the second category, ii.) Optimised Controlled 

Charging Solutions, research aims to obtain optimised 

controlled charging solutions based on the constraints and 

proposals defined in i.). The solutions are obtained through 

algorithms which incorporate the economical/technical 

needs of EV users, grid/utilities and energy producers via 

centralised or decentralised (distributed) programmes. 

Masoum, et al. [10] state that decentralised programmes, 

with the aid of real time information, enable EV users to 

decide under what power and time their vehicles are to be 

charged, while centralised coordination charging is 

scheduled through an EV aggregator that acts as a 

middleman between utilities and users. As such, the same 

study concludes that centralised programmes are intend to 

guarantee higher levels of optimal grid usage by forfeiting 

user ownership, while decentralised programmes look to 

prioritise the desires of each individual. 

Quadratic programming (QP) stands out as one of the 

main forms used to achieve optimal EV charging scheduling 

within centralised coordination [2, 8, 11]. In decentralised 

programmes, research has primarily focused on developing 

multi-agent solutions (MAS) [2, 12, 13]. Within the research 

associated with scheduling EV charging through MAS, 

studies typically associate each agent to a smart charging 

controller (SCC), which has the ability to calculate and 

update each charging schedule by monitoring the real-time 

price (RTP) of electricity and the battery status of the 

respective EV [12, 14]. Furthermore, decentralised 

algorithms predominately operate in two distinct stages, 
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which firstly determine the optimal conditions of EV 

charging according to the benefits obtained by each user, 

and secondly, analyse if those conditions enable a safe 

operation of the grid through a verification stage [14, 15, 

16]. Additional studies have developed optimised controlled 

charging scheduling through Particle Swarm Optimization 

algorithms [17], innovative pricing measures applied on 

heuristic algorithms [18] and interactive decision making via 

a Nash equilibrium point [19]. 

In the third category, iii.) Vehicle-to-Grid (V2G) and 

additional UC charging operations, studies have analysed 

how the operation of V2G can further aid coordinated 

charging strategies in improving the configuration of LDs. 

Within iii.), research typically follows a standard pattern, 

which consists of initially applying charging strategies 

proposed in ii.) to successfully shift EV charging to off-peak 

periods, and subsequently, activating V2G operation during 

peaks of consumption [20, 21]. 

A significant portion of the aforementioned studies 

attribute more focus to the impacts of UC charging within 

evening peak hours, assuming that EV charging will mostly 

take place within the vicinity of the user’s home [3, 5, 6, 7]. 

However, research has shown that as EVs become more 

financially accessible, large portions of future EV charging 

will not only take place at home, but also within the 

workplace, in the morning, and commercial settings in the 

afternoon [22, 23]. These studies describe distinct results for 

the weekends, whereby LDs present less distinctive 

configurations that typically vary throughout the entire 

afternoon. These additional UC charging operations do not 

display the flexibility of evening charging sessions, as they 

are unable to be postponed to periods of low demand, such 

as the valley period. Thus, authors have proposed models in 

which V2G is applied to aid the national grid with said 

charging operations [24, 25].  

Bearing the aforementioned in mind, this paper attempts 

to account for both evening and additional UC charging 

operations, to establish if future EV charging raises 

potential threats within other periods. Furthermore, this 

work also analyses the EV penetration levels for which 

discussed charging coordination strategies are actually 

required. This analysis can be useful for national policy 

makers and utilities for planning the upgrade process of 

national grids according to the growth rate of their 

respective EV fleet, as accommodating optimised controlled 

charging strategies, through smart grids (SG), will be a 

timely and costly process that will have to be implemented 

in a progressive and thoughtful manner.  

As such, the objective of this study is to identify 

charging strategies discussed within the literature that 

guarantee sustainable configurations of the Portuguese LD 

under different potential levels of EV penetration in 2030. 

This research has been carried out for week and weekend 

days within all seasons of the year, and is based on a 

theoretical analysis developed within the scope of this 

research. Specifically, the theoretical analysis has the 

objective of designing a methodology aimed at conceiving, 

developing, and testing the set of models used to establish 

the simulation conditions required for the practical analysis 

of this research. This methodology can be adapted to the 

conditions of other countries to study similar problems. 

The remainder of this paper is organised as follows: 

Section 2 – Methodology and Simulation Conditions, 

presents the conception and application of the methodology 

for gathering the simulation conditions required for this 

research. Section 3 – Results and Discussion describes 

relevant results obtained from the simulations, and answers 

the main research question. Finally, section 4 – Conclusions 

presents some final remarks regarding the overall 

conclusions of this work. 
 

2. Methodology and Simulation Conditions 
 

2.1. Prediction of the Portuguese baseline load 

diagram (BLD) for 2030 

Until 2050, the consumption of electric energy in 

Portugal will grow due to the presence of EVs and the 

increasing demand from traditional electric energy 

consuming sectors [26, 27]. As such, to predict the impact of 

EV charging on the configuration of future Portuguese LDs, 

it is necessary to obtain a baseline load diagram (BLD) for 

2030 that accounts for the growth in electric energy 

consumption of activities other than EV charging. 

To obtain the BLDs belonging to the different seasons of 

the 2030, a growth rate (GR) associated with the increase in 

yearly electrical consumption between a reference year and 

2030 was applied to the LDs of the respective reference 

year, designated as reference load diagrams (RLDs). The 

RLDs used within this research belong to the year of 2017 

and correspond to the week and weekend days in which the 

highest value of daily electric energy consumption was 

registered within each season [28].  

The calculation of GR depended on the registered and 

predicted values of Portuguese annual electric energy 

consumption within the years of 2017 and 2030, which 

within the scope of this research correspond 49,383 GWh 

and 52,319 GWh, respectively [26]. Accordingly, the GR 

between 2017-2030 is 5.95%. Figure 1 illustrates the RLD 

and the BLD obtained for the weekday of Winter in 2017 

and 2030, respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. RLD (2017) and BLD (2030) for Winter weekday 

in MW 
 

2.2. Prediction of LP EV penetration in Portugal for 

2030 
 

Regarding the prediction of the light-duty passenger 

(LP) EV fleet in Portugal for 2030, three different scenarios 

were considered: pessimistic; base; and optimistic, in which 

the size of the EV fleet increases from the pessimistic to the 

optimistic scenario.  
 

2.2.1. Pessimistic Scenario 

The pessimistic scenario assumes the predictions carried 

out by the Direção-Geral de Energia e Geologia (DGEG), 

i.e. Ministry of Environment and Energy, which predicts 

that the size of the LP EV fleet by 2030 will correspond to 

85,925 vehicles [26]. 
 

2.2.2. Base Scenario 

The size of the LP EV fleet within the base scenario was 

based on a European Union (EU) directive that establishes 

minimum procurement levels for share of clean LP vehicles 

between 2nd August 2021 and 31st of December 2030 for 

each member-state [29]. In the case of Portugal, that target is 

set at 29.7%. As the aforementioned target is established as 
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a percentage of the entire Portuguese LP vehicle fleet, a 

prediction of the size of said vehicle fleet for 2030 was 

initially required. To obtain the respective prediction, a 

linear regression associated with the development of the 

Portuguese LP vehicle fleet from 1991-2018 [30] was 

performed, with the intent of obtaining a trend line depicting 

its annual development. Illustrations of the linear regression, 

performed from 1991-2030, as well as the development of 

the respective LP vehicle fleet from 1991-2018 are depicted 

in figure 2. 
 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Linear Regression of LP vehicle fleet from 

1991-2018. 
 

The linear regression model indicates that Portugal will 

register an annual increment of 113,008 LP vehicles from 

2018 to 2030. Given the 29.7% procurement level 

established for Portugal, the annual increment of LP EVs 

corresponds to 33,563. Thus, in addition to the 19,689 LP 

EVs existent in Portugal as of 2018 [31], the number LP 

EVs in Portugal by 2030, within the base scenario, is 

422,445. 

2.2.3. Optimistic Scenario 

The size of the optimistic EV fleet considers targets set 

by the Portuguese government regarding desired levels of 

EV penetration for 2030 [27]. According to the 

aforementioned reference, the national government has 

targeted at securing 30% of its mobility through electrified 

sources. As such, considering the linear regression’s 

prediction of the size of the LP vehicle fleet in 2030, the 

number of LP EVs within the optimistic scenario is 

2,008,717. Table 1 presents the sizes of the EV fleet within 

each scenario. 
 

Table 1. Size of the LP EV fleet per scenario. 
 

Scenarios Size of EV fleet 

Pessimistic 85,925 

Base 422,445 

Optimistic 2,008,717 
 

2.3. Mobility Patterns of Portuguese drivers and EV 

consumption rates 
 

2.3.1.1. Mobility Patterns – Metropolitan Areas of 

Porto and Lisbon 

The Portuguese mobility patterns built for this study 

were based on information retrieved from a document 

published by the Portuguese National Institute for Statistics 

(INE) [32], which presents organised statistical data on the 

mobility patterns associated with the main forms of transport 

within the Metropolitan Areas of Porto (MAP) and Lisbon 

(MAL). Regarding the mobility of vehicles, the document 

categorises the daily recorded trips according to the travel 

motive (TM) of each journey, e.g. work and study. 

Subsequently, the report identifies the most common 

travelled distance, in km, and portion of fleet, in percentage, 

associated with the different TMs of each metropolitan area. 

As the mobility patterns (i.e. travelled distance and 

portion of fleet corresponding to each TM) of MAP and 

MAL were established separately, it was necessary to create 

a single set of data which merged the mobility patterns of 

both regions. Within the scope of this research, the 

aforementioned data was designated combined mobility 

pattern of MAP and MAL (MAP+MAL). MAP+MAL was 

obtained through a weighted arithmetic average, whereby 

the weights, used to express the contribution of MAP and 

MAL within the calculation of the mobility patterns of each 

TM, were established according to the number of journeys 

registered within the respective TM of each metropolitan 

area.  

2.3.1.2. Mobility patterns – Portugal 

The Portuguese mobility patterns were established 

according to the NUTS III geographical classification, 

which subdivides the Portuguese territory into metropolitan 

areas and intermunicipal communities (ICs) due to the 

functional similarity existent between both geographical 

classifications [33].  

To combine the driving behaviours of the ICs and 

MAP+MAL, it was initially necessary to establish the 

mobility patterns of each IC in accordance with the data of 

MAP+MAL. The aforementioned requirement was achieved 

via a linear extrapolation of the MAP+MAL data, according 

to the proportional difference existent between the 

geographical areas of MAP+MAL and the respective ICs 

[34]. Thus, ICs with the same geographical area of 

MAP+MAL possess travelled distances equal to the ones of 

MAP+MAL within every TM. For simplicity, the portion of 

fleet linked to the TMs of each IC were assumed to be equal 

to the ones registered in MAP+MAL. Moreover, the single 

area of MAP+MAL, used to perform the linear 

extrapolation, was calculated via a weighted arithmetic 

average, whereby the contribution of both areas was based 

on their proportional difference.  

Once the mobility patterns of each IC were established 

in accordance with MAP+MAL, the statistical data 

associated with each location was combined into a single 

representation of the driving behaviours of the entire 

Portuguese population. Again, this unique set of data was 

obtained via a weighted arithmetic average, in which the 

contribution of each location was established according to 

the size of the population existent within each region [34]. 

Thus, locations with larger populations have greater impact 

on the calculation of the travelled distance of each TM. 

Likewise, the portion of fleet of each TM are equal to the 

ones obtained in the calculation of MAP+MAL. Table 2 

presents the mobility patterns of the Portuguese population 

during weekdays. 

Table 2. TM characteristics for Portuguese population during 

weekdays. 
 

TM 
Travelled 

Distance (km) 

Portion 

of Fleet (%) 

Work 33.3 36.06 

Study 16.7 13.53 

Friend/Family 

Accompanying 
16.6 18.85 

Leisure 35.9 6.9 

Shopping 14.5 13.44 

Personal Affairs 34.1 10.89 

Other Activities 30.2 0.61 
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2.3.2. EV consumption rates: 

Examples of common EVs are the midsize 2016 Nissan 

Leaf and the SUV 2016 Tesla Model X, which are rated at 

0.19 kWh/km and 0.24 kWh/km, respectively [35]. Further 

studies categorise EV consumption ratings according to the 

size of the vehicle, which range from 11kWh/100km to 

23kWh/100km in mini sized and large sized EVs, 

respectively [36, 37]. Additionally, studies conducted by 

Darabi et al. [6], Wu et al. [38] and Chen et al. [39] 

consider consumption rates of 0.22 kWh/km, 0.15 kWh/km 

and 0.19 kWh/km, respectively. 

According to Yuksel et al. [40], the consumption rating 

of an EV varies according to the ambient temperature. Thus, 

the authors developed a mathematical model, exhibited in 

equation 1, which determines the electrical consumption 

rating (𝑐𝑖) of the Nissan Leaf, a common mid-sized EV 

within the Portuguese fleet [36, 41], according to the 

temperature (𝑇𝑖)  in which it is being driven in. As the 

present study analyses EV charging within different seasons 

of the year, the consumption ratings were obtained 

according to the aforementioned model, which was 

manipulated in order to accommodate values of temperature 

and distance in ºC and km, rather than the original ºF and 

miles. The input temperature used to determine the electrical 

consumption for each season was assumed as the average 

temperature registered in each season of 2017 [42], which 

corresponds to the same year of the RLDs. Table 3 indicates 

the consumption ratings obtained. 

 𝑐𝑖(𝑇𝑖) = 0.62 ∗ [∑𝑎𝑛(1.8𝑇𝑖 + 32)𝑛
5

𝑛=0

] 
 

(1) 
 

 

 
 

 

 

 

Table 3. EV energy consumption ratings per season. 
 

Season 
EV energy consumption ratings 

(kWh/km) 

Winter 0.180 

Spring 0.168 

Summer 0.195 

Autumn 0.172 
 

2.4. Charging infrastructure, patterns and strategies 
 

2.4.1. Charging infrastructure 

The charging infrastructure assumed within the 

simulations of this research is the one associated with the 

European Standard [43]. Thus, the charging power rates 

follow three different categories: i.) Slow charging, in which 

charging is carried out in a domestic or long-time parking 

environment with a rated power ≤3.7kW in AC current; ii.) 

Normal charging, where charging is performed in private 

and semi-public locations with a rated power between 

3.7kW to 22kW in AC current; and iii.) Fast charging, in 

which charging is undergone in public areas with a rated 

power >22kW in AC or DC current. 
 

2.4.2. Charging patterns 
 

2.4.2.1. Charging patterns – Selected charging modes 
 

Currently, charging in private outlets plays an important 

role in certifying the energetic needs of EVs, however, as 

EVs become more financially accessible, governments 

recognise the need to assure public charging points. In 

particular, the EU has begun to create targets directed at 

establishing minimum levels of available public charging 

outlets within each of its member-states [44]. As such, the 

present research takes into consideration different charging 

power rates according to the environment in which the 

charging operation is being undergone. Specifically, private 

charging is carried out under Normal charging at home or 

work, with a rated power of 7.4kW, while public charging 

can either be performed in: i.) the vicinity of home or work 

under Normal charging via a rated power of 22kW; or ii.) 

commercial settings in AC Fast charging or DC Fast 

charging, with a rated power of 50kW [44].  
 

2.4.2.2. Charging patterns – Time and location of 

charging events 
 

Private charging operations typically take place upon the 

user’s arrival at work during weekdays, or following the 

arrival of the EV user at home during weekdays and 

weekends. Alternatively, public charging events are carried 

out under two distinct situations, which are: i.) EV users 

who do not have access to a private charging outlet, and 

therefore carry out charging in a public station upon their 

arrival at work during weekdays, or at home during 

weekdays and weekends; and ii.) in commercial spaces, 

where EVs are parked for a considerable amount of time due 

to leisure, shopping, sports facilities or other activities 

during both weekdays and weekends [22, 45]. 

Two dominant distribution of arrivals are noticed within 

journeys carried out during weekdays, which take place in 

the morning and evening when drivers arrive at their 

workplaces and households. As such, these events 

correspond to charging activities which are carried out in 

both public and private settings. Additionally, a more 

modest cluster of arrivals is also identified during the 

afternoon, which correspond to journeys that have 

commercial spaces as their destination, and therefore, 

correspond to charging events carried out in public outlets. 

The time at which the peak of arrivals is registered in the 

morning, afternoon and evening is 9AM, 2PM and 7PM, 

respectively [22, 23, 32].   

During the weekend, there is an absence of journeys in 

the morning, due to users not driving into work. As such, 

weekend charging is mostly undergone between early 

afternoon and evening hours, however, its distribution is less 

obvious, as some authors consider it to be undergone 

continuously within the abovementioned timespan [22], 

while others identify two peaks of arrivals in the early 

afternoon and evening [23, 32]. Within the scope of this 

research, the latter charging distribution was considered, as 

it closely resembles the charging distribution of journeys 

performed in Lisbon [32]. Specifically, afternoon charging 

activities are assumed to be undergone in commercial spaces 

via public outlets, while evening charging events are carried 

out upon the user’s arrival at home, and therefore take place 

in both private and public charging points. The time at 

which the peak of weekend arrivals is registered within the 

afternoon and evening is at 12PM and 7PM, respectively. 

Information regarding the arrivals of EVs can be found in 

table 4. 
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Table 4. Charging pattern characteristics for weekdays and 

weekends. 
 

Day Peaks 
Charging 

Point 
Location 

Weekday 

Morning – 9AM 
Private + 

Public 

Work + 

Commercial 

Afternoon – 2PM Public Commercial 

Evening – 7PM 
Private + 

Public 

Home + 

Commercial 

Weekend 

Afternoon – 

12PM 
Public Commercial 

Evening – 7PM 
Private + 

Public 

Home + 

Commercial 

Similarly to the articles discussed in the introductory 

chapter, the distribution of EV arrivals considered in the 

simulations of this work were mathematically modelled 

according to normal probability density function. Table 5 

displays the normal distribution parameters for each 

charging session. Figure 3 depicts the distribution of EV 

arrivals in the evening during weekdays.  
 

Table 5. Normal distribution parameters of weekday and 

weekend charging sessions. 
 

Day Mean Standard Deviation 

Weekday 

Morning – 9AM 1 Hour 

Afternoon – 2PM 40 Minutes 

Evening – 7PM 1 Hour 

Weekend 
Afternoon – 12PM 1 Hour 

Evening – 7PM 1 Hour 

 

 

 

 

 

 

 

 
 

 
 

Figure 3. Distribution of EV arrivals during evening 

weekdays. 
 

2.4.2.3. Charging patterns – Quantification of 

charging events 
 

As Portugal is a member-state of the EU, the 

information regarding the share of fleet associated with 

private and public charging was obtained from the study 

Recharge EU, performed by Transport and Environment 

(T&E) [45]. Table 6 indicates the referenced values, in 

which public charging events are registered according to 

their rated power. 
 

Table 6. Share of EV fleet charging under private/public 

charging points. 
 

Charging 

Point 
Location 

Portion of EV 

fleet (%) 

Private 
Home 45 

Work 24 

Public 
Commercial – Fast 9 

Commercial – Normal 22 
 

To quantify the amount of public Normal and Fast 

charging events taking place under each weekday charging 

period, information from the study by Helmus, et al. [46] 

was considered, where the amount of charging 

sessions/hour are divided into two distinct categories: public 

charging with less than 6 hours (<6h) and with more than 6 

hours (>6h). Moreover, the study classifies these charging 

events according to the type of charging point used, i.e. 

demand driven or strategic. However, these classifications 

are disregarded within this research, as they are merely 

intended at distinguishing charging points which are 

regularly frequented by dedicated consumers (demand 

driven) from those that are used by a wider range of drivers 

(strategic). Thus, the amount of charging sessions/hour 

within the <6h and >6h categories are to be interpreted as a 

sum of both demand driven and strategic classifications.  

The results of the aforementioned study [46] identify 

charging events with similar patterns to the ones already 

discussed, with three distinct peaks of charging events 

occurring within the <6h category – morning, afternoon and 

evening – and two peaks occurring in the >6h category – 

morning and evening. As such, within the scope of this 

research, the >6h category is carried out by users who do not 

possess a private charging outlet, and therefore, charge 

publicly in the vicinity of their workplace, in the morning, or 

household in the evening, via Normal charging – 22kW. 

Alternatively, the <6h category is assumed to be undergone 

by charging events that present short connection times and 

are therefore undergone through Fast charging – 50kW. The 

aforementioned information is specified in table 7 where the 

column identified as portion of EV fleet resembles the 

corresponding information of table 6 according to the 

proportions indicated in Charging sessions/hour. 
 

 

Table 7. Share of EV fleet associated with public 

charging stations during weekdays [46]. 
 

Charging 

duration 
Time 

Charging 

sessions/hour 

Portion of EV 

fleet (%) 

<6h (Fast 

– 9%) 

Morning 60 3 

Afternoon 60 3 

Evening 60 3 

>6h 

(Normal – 

22%) 

Morning 45 9.5 

Evening 60 12.5 
 

The partition of public charging during weekends was 

established according to the T&E document, which indicates 

that commercial areas should equip 50% of their public or 

semi-public parking lots with charging infrastructure by 

2030. As such, this study considers that, during the 

weekend, half of the public charging events are carried out 

during the afternoon, while the other half in the evening. 

Furthermore, this logic is extended to EVs that charge 

privately during weekdays in the morning, as users do not 

travel to work in the weekend. Private charging at home is 

undergone in the same fashion as during weekdays. Table 8 

identifies the share of public EV charging during the 

weekend more clearly [45]. 
 

Table 8. Share of EV fleet associated with public 

charging stations during weekend days. 
 

Charging 

duration 
Time 

Portion of 

EV fleet (%) 

<6h (Fast – 

9%) 

Afternoon 4.5 

Evening 4.5 

>6h (Normal 

– 46%) 

Afternoon 23 

Evening 23 
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According to INE [32], MAL registers an approximated 

16.7% reduction of its mobility level during the weekend. 

As MAL accounts for a considerable number of journeys 

executed in Portugal, the size of the EV fleet during the 

weekend is considered be 83.3% of its original value within 

each penetration scenario.  

Lastly, Morrissey, et al. [47] indicate that Fast charging 

stations register a higher quantity of demanded energy per 

vehicle than Normal charging points. As such, for the 

present research, the demand of Fast charging events adopts 

a distribution which was obtained via an arithmetic average 

of the energy demanded, per Fast charging event, within 

petrol stations and car parks [47]. (See figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Energy demanded from EVs in Fast charging 

stations (kWh). 

2.4.3. Charging strategies 
 

This research analyses the effect of EV charging on the 

LD according to three distinct charging strategies: i.) 

Uncontrolled (UC) charging; ii.) Time-of-Use (TOU) 

charging; and iii.) Smart grid (SG) charging. 

UC charging is characterised by EV owners that charge 

their vehicles immediately after their arrival at a certain 

destination. Thus, this EV charging strategy is characterised 

by all the steps described in the previous subsection – 2.4.2. 

The TOU charging strategy adopts the patterns of UC 

charging, with the difference that Normal private and public 

EV charging in the evening is shifted to the beginning of the 

off-peak hours, which according to the daily cycle of the 

TOU price tariff established by Energias de Portugal 

(EDP), the biggest utility in Portugal, begins at 22:00 [48]. 

Additionally, evening Fast charging operations continue to 

be undergone in an UC manner, as users are generally 

seeking to charge their vehicle on demand.  

The SG charging strategy is similar to the TOU strategy, 

as all evening public and private Normal charging events are 

also shifted to off-peak hours via the monetary incentive 

offered by the TOU price tariff. However, in this case, by 

interacting in real time with a central aggregator, each EV is 

charged with the minimum power level required to fulfil its 

respective energy needs until 6 AM – when users begin 

travelling to work. 

3. Results and Discussion 
 

This section is devoted to discussing the set of results 

obtained from the simulations, with the purpose of 

identifying the most adequate charging strategy within each 

of the three predicted levels of EV penetration. Due to the 

extensive number of results obtained from the simulations, 

only the results which present relevant or unexpected 

information will be depicted.  

 

 
 
 

3.1. Results and Discussion – Pessimistic Scenario 

Within the pessimistic EV penetration level, the highest 

rise in demanded power takes place under the UC charging 

strategy during the evening. However, as the size of the EV 

fleet is small, the rise in demand is of no major concern, as 

the load induced by UC EV charging during said period 

presents itself in a relatively flattened manner. As such, 

within the base scenario, EV charging can be performed in 

an UC manner. This result was equally obtained within the 

weekdays and weekends of every season.  
 

3.2. Results and Discussion – Base Scenario 
 

EV charging under the base scenario does induce a 

greater difference in the LDs when compared to the 

pessimistic scenario. Nevertheless, the most significant 

change induced by UC charging on the configuration of the 

BLD is a 9% increase in demanded power during the 

evening, due to the combination of a relatively low sized EV 

fleet with charging events that are adequately spread out in 

time. However, one should attempt to apply the TOU 

charging strategy to avoid this unnecessary burden of 

evening EV charging. 

To discuss these results, the simulations associated with 

weekdays of Winter will be presented, as they correspond to 

the time of year in which the Portuguese LDs register their 

highest levels of daily consumption. The results obtained for 

the UC and TOU charging strategies within the base EV 

penetration level are depicted in figures 5 and 6, 

respectively. 

 

 

 

 

 

 

 

 

 
 

 
 

 

Figure 5. LD of Winter weekdays in 2030, under the base 

EV penetration level following the UC charging strategy. 
 

 

Figure 6 clearly suggests that TOU charging does 

successfully allow for a reduction of the EV demand in the 

evening, as a considerable number of charging events within 

that period are shifted to the off-peak hours. However, by 

shifting most evening charging events to a later period, and 

by initiating the respective charging activities 

simultaneously, a significantly sharp difference in power is 

induced within the LD that gives way to a new maximum 

daily load of 11,016MW, which surpasses the 10,082MW 

registered within the UC charging strategy in the evening. 

As such, it is possible to state that number of EVs that can 

charge under the TOU strategy and produce results that 

contribute to a better working power system is limited.  
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Figure 6. LD of Winter weekdays in 2030, under the 

base EV penetration level following the original TOU 

charging strategy.  

Although the aforementioned results present a limitation 

towards the application of the TOU charging strategy, they 

should not mislead the reader into thinking that, under this 

level of EV penetration, the UC strategy is always more 

beneficial. Firstly, UC charging is not regulated, and 

therefore presents a greater level of uncertainty. Secondly, 

modifications to the TOU strategy, such as shifting a smaller 

amount of charging events to an even later off-peak period, 

can produce more satisfying results, depending on the size 

of the EV fleet. Within the scope of this research, the 

charging strategy associated with the latter indicated TOU 

measures is designated alternative TOU charging strategy, 

whereby only private Normal charging events are shifted 

00:00 (see results in figure 7). Meanwhile, from here forth, 

the TOU strategy depicted in figure 6 will be named original 

TOU charging strategy.  

 

 

 

 

 

 

 

 

 

 

Figure 7. LD of Winter weekdays in 2030, under the 

base EV penetration level following the alternative TOU 

charging strategy. 
 

 

By analysing figure 7, it is evident that the alternative TOU 

charging strategy induces a higher evening load than the 

original TOU strategy, given the larger amount of charging 

events taking place at that time. However, shifting a lower 

amount of evening charging events to an even later period 

produced enhanced results, as the maximum daily load of 

9,622MW, registered within the alternative TOU charging 

strategy, is lower than one observed in the UC and original 

TOU strategies, which are 10,082MW and 11,016MW, 

respectively. This result confirms that while the original 

TOU charging strategy may present adversities to certain 

EV penetration levels, it does not necessarily have to be 

discarded immediately, as adaptations of said method, 

according to the EV penetration level in which it is being 

used, can still help to contain the complexities induced by 

UC charging in a simple, and user voluntary manner. 

The SG charging strategy produces the most attractive 

results within the base scenario. However, as figure 7 

suggests, it is not imperative for this specific EV penetration 

level, as the alternative TOU charging strategy guarantees a 

safe enough use of the national power system. This 

conclusion is simultaneously obtained for the weekdays and 

weekends of the remaining seasons. 
 

 

 

3.3. Results and Discussion – Optimistic Scenario 
 

For the reasons presented in the base scenario, the 

results illustrated in this subsection all correspond to 

weekdays of Winter. Figures 8 and 9 depict the results of the 

UC and original TOU charging strategies within the 

optimistic scenario, respectively. The results present 

alarming threats to the national power system, as the 

considerable size of the EV fleet induces significant levels 

of demanded power within both LDs. Moreover, the 

optimistic scenario further corroborates the observations 

made in the base scenario, as the difference between the 

maximum daily power recorded in the original TOU and 

UC strategies, which respectively correspond to 20,675MW 

and 13,094MW, is 7,581MW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. LD of Winter weekdays in 2030, under the 

optimistic EV penetration level following the UC charging 

strategy. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. LD of Winter weekdays in 2030, under the 

optimistic EV penetration level following the original 

TOU charging strategy. 
 

Given the above results, one must study the possibility 

of the alternative TOU strategy providing a safer platform to 

carry out EV charging within the optimistic scenario – 

depicted in figure 10. The results indicate that the evening 

peak load of the alternative TOU strategy is 17% lower than 

the one observed in UC charging. Moreover, the power 

registered at the beginning of its off-peak charging period is 

36% lower than the one obtained in the original TOU 

strategy. However, the similar peak loads of 13,094MW and 

13,216MW registered within the UC and alternative TOU 
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strategies, respectively, suggest that the latter strategy is no 

longer a viable solution to contain the threats of EV 

charging within the optimistic scenario, as the level of power 

induced on the LD is already considerable and shows no 

improvement from the UC strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. LD of Winter weekdays in 2030, under 

the optimistic EV penetration level following the 

alternative TOU charging strategy. 
 

The above result suggests that, above a certain level of 

EV penetration, successive adjustments to the TOU charging 

strategy will not be sufficient to contain the threats of EV 

charging, and that ultimately, the SG charging strategy will 

be inevitable for countries who seek to promote clean 

mobility. Figure 11 depicts the simulation of the SG 

charging strategy within the optimistic scenario. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 11. LD of Winter weekdays in 2030, under the 

optimistic EV penetration level following the SG charging 

strategy. 
 

 

The results illustrated in figure 11 confirm that the SG 

charging strategy contains the dangers of EV charging under 

the optimistic scenario, as the maximum peak load of 

10,768MW is considerably lower than the 13,094MW 

observed when EVs charge in an UC manner. Furthermore, 

carrying out private and public Normal charging events 

under a controlled power rate within the off-peak hours 

promotes valley-filling, which enables a LD with a more 

flattened format due to less power fluctuations. However, in 

an unprecedented manner, the daily peak of consumption 

occurs in the morning, indicating that the evening peak load 

could cease to be the biggest threat to utilities in the future, 

due to morning hours presenting higher values of demanded 

power. 

As a solution, one could potentially apply the SG 

charging strategy for morning charging sessions also. 

However, applying the SG strategy to properly schedule 

morning charging is complex, as these connections do not 

present the opportunity of charging within a flexible off-

peak period, like evening charges. Thus, a way of avoiding 

this new peak of consumption could be solved by possibly 

installing a higher number of public charging points in 

residential areas, for users to charge their EVs in the evening 

rather than the morning. This decision would have to be 

subsequently followed by creating incentives for users to 

shift their morning charging activities to the evening, which 

could be easily achieved through TOU price tariffs. The 

outcome of a regulation similar to this one would not only 

reduce the morning load induced by EV charging, as it 

would also promote further levels of valley-filling, through 

the use of the SG charging strategy. Figure 12 illustrates the 

LD obtained from applying the set of abovementioned 

measures within the optimistic scenario, in which Normal 

charging activities in the morning are shifted to the off-peak 

period.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12. LD of Winter weekdays in 2030, under 

the optimistic EV penetration level following the 

additional measure of SG charging strategy. 
 

By comparing figures 11 and 12, one notices that the 

respective morning peak is reduced from 10,768MW to 

8,720MW, and that higher levels of valley-filling are 

achieved. Moreover, the new measures allow for a 

maximum daily load of 9,917MW, which is a small increase 

from the 9,293MW registered in the BLD considering the 

overall amount of daily energy demanded from EV 

charging, which corresponds to 8,208MWh. Likewise to the 

base scenario, the set of results and conclusions obtained for 

the optimistic EV penetration level were observed amongst 

all the days of the week and seasons of the year.    

 

4. Conclusions 

This paper offers a methodology that attempts to analyse 

the potential impacts of future EV charging on the 

configuration of a country’s daily LD. Within the scope of 

this research, the aforementioned methodology was used to 

identify the charging strategies which enable sustainable 

configurations of the Portuguese LD under three potential 

levels of EV penetration for 2030. To do so, the 

aforementioned methodology was built via a theoretical 

analysis which was divided into four main areas of research: 

i.) Prediction of the Portuguese BLD for 2030; ii.) 

Prediction of LP EV penetration in Portugal for 2030; iii.) 

Mobility Patterns of Portuguese drivers and EV 

consumption rates; and iv.) Charging infrastructure, 

patterns and strategies.  
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The results indicate that an intelligent grid is not 

required to carry out charging activities within the 

pessimistic and base scenarios. Thus, within these EV 

penetration levels, charging may be carried out through the 

UC or TOU charging strategies, with the latter allowing 

further benefits. Within the optimistic scenario, Portugal’s 

BLD can potentially increase from 9,293MW to 13,094MW 

in the evening if charging is performed in an UC manner. To 

avoid this situation, EV charging must be carried out 

through controlled charging strategies. However, the 

simulations indicate that the original and alternative TOU 

strategies do not guarantee a safe operation of the grid, as 

the former leads to an unprecedented 20,675MW, and the 

latter induces a maximum registered power of 13,216MW, 

which indicates no improvement in relation to the UC 

strategy. Thus, EV charging will need to be carried out 

through the SG charging strategy, which will enable an 

evening load of 9,917MW. However, by managing to 

control EV charging in the evening, the SG charging 

strategy will result in the morning load becoming the highest 

peak of daily consumption, as charging events will still be 

undergone in an UC manner in that period. As such, this 

paper suggests that more public EV stations be made 

available within residential areas for users to charge their 

EVs in the evening rather than the morning. Such measures 

could easily be incentivised by TOU price tariffs and are 

successful in reducing the morning peak from 10,768MW to 

8,720MW. Moreover, higher levels of valley-filling are also 

achieved, as more users undergo SG charging. 
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